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Glasses 

In this paper we study rigorously the random Ising model on a Cayley tree in 
the limit of infinite coordination number z ~ m. An iterative scheme is devel- 
oped relating mean magnetizations and mean square magnetizations of succes- 
sive shells far removed from the surface of the lattice. In this way we obtain 
local properties of the model in the (thermodynamic) Iimit of an infinite number 
of shells. When the coupling constants are independent Gaussian random 
variables the SK expressions emerge as stable fixed points of our scheme and 
provide a valid local mean-field theory of spin glasses in which negative local 
entropy (at low temperatures) while perfectly possible mathematically may still 
perhaps be physically undesirable. Finally we examine the TAP equations and 
show that if the average over bond disorder and the limit z ~ m are actually 
performed, one recovers our iterative scheme and hence the SK equations also 
in the thermodynamic limit. 

KEY WORDS: Cayley tree; iteration; fixed point; spin glass; Gaussian 
distribution; local mean-field theory; SK equations; TAP equations. 

1. INTRODUCTION 

Since the original work of Edwards and Anderson (I) and Sherrington and 
Kirkpatrick (SK), (2~ much has been written about the validity of these 
authors' mean-field theories for spin glasses (Refs. 3-5 and references 
quoted therein). 

The random Curie-Weiss model considered by SK and the resulting 
mean-field-type equations have a certain appeal to them but, as pointed out 
by SK, these equations lead to negative entropy at low temperatures. Use 
of the so-called n-replica trick and interchanges of limits have been sug- 
gested as causes of this unphysical phenomenon and various theories have 
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been proposed to overcome these difficulties. It is probably fair to say, 
however, that there is still no universally acceptable mean-field theory of 
spin glasses at this time, nor are there any rigorous results on the range of 
validity of the SK equations. 

An alternative approach to the problem was proposed by Thouless, 
Anderson, and Palmer (TAP) (6) in which the n-replica trick was avoided by 
taking thermal averages at the outset on a lattice with large coordination 
number z. The resulting TAP equations apparently lead to a physically 
acceptable entropy but there are still difficulties in performing the average 
over bond disorder and controlling the mean-field limit z ~ oe. 

In their derivation, TAP argue that for large z the only terms in a 
graphical expansion that are important are those corresponding to a Bethe 
lattice or Cayley tree. On the other hand, Katsura, Inawashiro, and 
Fujiki (7) consider a variant of the Bethe approximation, and also without 
use of the replica trick, obtain the SK equations in the limit z-~ c~. 

In order to understand this apparent discrepancy we present here a 
rigorous analysis of the random Ising model on a Cayley tree in the limit of 
infinite coordination number z. What we obtain in this limit is an iterative 
scheme 

mi + 1 = f ( m i ,  qi) 
(1.1) 

q~+ I = g ( m i ,  qi) 

relating the mean magnetizations m~ and their mean squares q~ in layers or 
shells i of the tree far removed from the surface. In the limit i---> ~ ,  m i and 
q~ converge to a stable fixed point m , q  of (1.1) which then become 
equivalent to the SK equations. 

Since surface effects have been eliminated in the limit i---> m, it is clear 
that m and q should be interpreted as local  quantities rather than global or 
bulk expressions for the magnetization and its mean square, respectively. 
This is also the case for the nonrandom Ising model on a Cayley tree, (8) 
where it is known that the bulk properties (9) are not described by local 
Bethe approximation expressions. 

The free energy obtained from the SK equations should likewise be 
considered a local  free energy, at least for the Cayley tree model. Negative 
local entropy is then mathematically possible but probably still physically 
undesirable. Nevertheless the random Ising model on a Cayley tree pro- 
vides an instance where the SK equations are rigorously valid and also 
provides a possible interpretation of this theory as a local mean-field 
theory. 

Our analysis certainly does not provide an exact solution to the 
original SK model nor does it provide a global mean-field theory of the 
spin glass state. 
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In the following section we formulate the general Ising problem on a 
Cayley tree and derive expressions for local quantities. In Section 3 we 
perform averages with respect to a Gaussian distribution of bond strengths 
in the infinite coordination number (z ~ ~ )  limit. In this limit we obtain an 
"SK hierarchy" (1.1) from which the SK expressions emerge as stable fixed 
points. In Section 4 we reexamine the TAP equations and show that if 
averaging over bond disorder and the limit z ~ or are actually performed 
one also recovers the hierarchy (1.1) from the TAP equations. Our results 
are summarized and discussed in the final section. 

2. GENERAL FORMULATION OF THE ISING MODEL ON A 
CAYLEY TREE 

Since the model has been formulated in detail elsewhere, (8'1~ we will 
simply summarize the pertinent points and equations here. 

We consider a Cayley tree with N shells and coordination number z. 
(The case N = 2 and z = 3 is shown in Fig. 1.) Starting from a central spin 
o0 = +-+- 1 we label spins in successive shells s = 1,2 . . . . .  N with the indices 
(s)--( i~i  2 . . . i s )  i 1 = 1 , 2  . . . .  , z ; i ~ = l , 2 , . . . , z -  1 f o r k = 2  . . . . .  s. As- 
suming nearest neighbor interactions only and a uniform magnetic 
field H, the interaction energy E ( a )  in a given configuration of spins 
(O(s) = _ 1 ) is given by 

z - - I  
 Io) = -  . . . .  

i j = l  i1=I  i2=1 

z - t  z - I  

~ ~ ' [ ' . ( . a ' ' ' l . _ t - t ,  " "Oi i O" �9 "*  N - -  , l  , . . l  N " ' "  N - I  t l ' ' ' i N  

i l = l  i2=1 i N = l  

il = I i I = 1 i2~----I Oili2 

~ ,  z--1 z - - I  ) 

+ ' ' "  + E "'" ~, ~ (2"11 
i I = 1 i2 = 1 i N = I 

By summing successively over spins in shells s = 1, 2 . . . . .  N, we obtain the 
following expression for the partition function: 

N 

ZN = ~,  exp( -- ,BE { o } ) = 1-[ Ts (2.2) 
{o) s=l 
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Fig. 1. 
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Two shells of a Cayley tree with coordination number  3. 

where 

L = 

e 8 f i  2 cosh(Ko, il "4- t i l  ) -4- e -8  f i  2 cosh(K0,i,-  Li, ), s =  1 
i l = l  i l = l  

f i  z - I  z - I  

I I  ' ' '  IX [4cosh(K(,_,),(,) + L(,)) (2.3) 
i1=1 i2=1 i s = l  

X cosh(K(~_ 1),(~) - L(~)) it/2, 

K ( s -  l ) , ( s )  = f l J i ,  . . .  is_l, i l  . . . i s, 

sv~ l  

(2.4) 

and the L(s ) = Li,i2.. "i, are defined recursively by 
z - - I  �9 

L(,) = B + ~ artanh(tanh K(,),(s + i)tanh L(,+ o) 
is+l= 1 

with "boundary condition" 
L(N ) = B 

The thermal expectation value for the central spin o o is given by 

<Oo> =_ ZAT' E ooexp(-  fiE {o)) 
(o} 

= tanh[ B + i=1 ~ ar tanh( tanhK~ 

(2.5) 

(2.6) 

(2.7) 

and for later reference, the thermal expectation value of a spin oj in the first 
shell is given by 

(oj)  = �89 [tanh(K0j + L j )  - tanh(K0,j - L j ) ]  

+ �89 [tanh(Ko~ + Lj) + tanh(Kor - L i ) ] (%)  ( j  = I, 2 . . . . .  z) 

(2.8) 
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One major difficulty or drawback of the Cayley tree model is the 
unusual influence of boundary or surface effects. This is already apparent 
in the above equations if one sets the field H equal to zero at the outset. 
Thus from (2.6) and (2.7), the L(,) are all zero and (2.2) collapses into what 
amounts to a one-dimensional Ising model. (11) Also a simple calculation 
shows that the number of spins in shell s is given by 

v s = z ( z  - 1) s - '  (2.9) 

so that of the total number of spins for N shells, 

N 

I,(X) = 1 + Z G = ( Z - - 2 ) - ' [ Z ( Z - - 1 ) N - - 2 ]  (2.t0) 
s = l  

a finite fraction 

t , N / V ( N ) , ~ ( z - - 2 ) ( z - -  1) -1 as N---~ ~ (2.11) 

remain on the boundary. 
It is precisely because of this feature of the Cayley tree that the bulk 

properties of the model display a peculiar type of phase transition (9) that 
bears no relation to the Bethe approximation. 

What is true, however; is that local properties, such as the expectation 
values (2.7) and (2.8) of spins "deep inside" the lattice (in the limit N---> oo) 
are in agreement with the Bethe approximation. (8~ 

Here we are interested in local properties of the Ising model on a 
Cayley tree when the coupling constants J(s),(s+ 1) are random variables. In 
particular, we evaluate (quenched) averages of expressions (2.7) and (2.8) in 
the following sections for the case of independent Gaussian random vari- 
ables J(o,(~+ 1) in the limit z ~ ~ .  

. GAUSSIAN DISTRIBUTION OF COUPLING CONSTANTS IN 
THE LIMIT z-~ 

From (2.5), (2.6), and.(2.7) we have the hierarchy 

(Oo)= tanh[B + i=l ~ artanh(tanhK~ 

I z-' l X i = tanh B + 2 artanh(tanh Ki,o.X ~) = tanh L i 
j = l  

X~ -- tanh B + 2 artanh(tanhKg,~X/jk = t anhL  0. 
k = l  

(3.1) 

Xi,i2... iN = tanhB = tanh Li, .. iN 
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and we wish to evaluate the mean value of ( % )  when the K's are 
independent random variables with Gaussian distribution (2) 

p(K)=(z /2~rF ,2 ) l /2exp[ - z (K-  Koz-l)2/21~ 2 ] (3.2) 

Since we are particularly interested in the "classical" limit z ~ oo, we 
make the change of variables 

K, = Koz-1+ I(x~z- 1/2 (3.3) 

in (3.1) and (3.2), where a denotes symbolically the set of ordered pairs of 
indices (ill 2 . . .  i,_ 1; ilia �9 - �9 i~), and consider in place of (3.1) the hierarchy 

(a~ = tanh( B + K~ ~ Xi + ~ z - 1 / 2 ~  i=1 

Xi=tanh(B+ Koz-l~_aXij+ i~z-l /2~xi , i jXij)  
j = l  

J=~ (3.4) 

( ) X/j = t a n h  B + goz-1 2 Xijk "1- l~Z- 1/2  ~ ~ k = l = 1Xij'ijkAijk 

X~,i . . . .  iN = tanh B 

which is easily obtained by substituting (3.3) into (3.1) and keeping only the 
leading order terms in the Taylor expansions of artanh y and tanh y for 
small y. Also, for convenience, we have allowed all indices to range from 
unity to z, which has no effect asymptotically in the limit z -+ oo. 

The x,  are now independent random variables with Gaussian distribu- 
tion 

p(x) = ( 2 I r ) - ' / : e x p ( -  x2/2) (3.5) 

and the quantity we wish to calculaie is the mean value 

E i <oo> l - f . . f <oo> I I  p(xo),Jxo 
- o o  (~,) 

Let us first consider that part of (3.6) defined by the integral 

(3.6) 

I . . . .  tanh B + Ko z-1 X i + ls -1/2 x~ p(xi)dxi 
--co i = 1  i = 1  l i ~ l  

(3.7) 

which essentially amounts to integrating over the first shell of the lattice. 
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Define a new variable u by 

u = ( QN z ) -  ,/2 ~ xiXi (3.8) 
i=1 

and choose QN such that the vector 

X = (QNZ) - ' / 2 ( X , , X  2 . . . .  , Xz )  (3.9) 

has unit norm. That is 

Ou = z - I  ~ Xi 2 (3.10) 
i=1 

We can then construct an orthogonal matrix A (for example by the 
Gram-Schmidt  process) whose first row is X. Using this matrix A = (%) to 
make an orthogonal change of variables 

Yi = ~ aijxj, Yl ~ U (3.11) 
j = l  

it then follows straightforwardly from (3.5), (3.7), and (3.8) that 

I =  (2~r)- ' /2 f ;ooe-U2/2tanh(B + KoM N + KQ~/2u)du (3.12) 

where 
Z 

M N = Z - '  E X i (3.13) 
i=1 

We now need to evaluate the "average" of (3.12) over the second shell 
variables xi, ~. Referring to (3.4) and repeating the above steps (3.8)-(3.12) 
we define new variables 

ui = ( QN-~z ) -  ,/2 ~ xi.ijXij ' i = 1,2 . . . . .  z (3.14) 
j=l  

where 

We can then write 

where 

j = l  

X i = tanh(B + KoMN_ , + Is (3.16) 

MN_ , = z -~ ~ X O. (3.17) 
j = l  

and after an appropriate orthogonal change of variables we can make the 
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replacement 
z - - I  

I-[ p(xi, ij) dxi,9 ~-)P(ui) dus (3.18) 
j=l 

in the average of I over second shell variables. [We have depressed the "i  
dependence" of QN-l and M N_ ~ in (3.15) and (3.17) since ultimately this 
dependence comes solely from dummy integration variables such as in 
(3.20) and (3.21).] 

Repeating this process to the outermost shell we obtain a nested 
hierarchy of equations ending in 

Xs . . . .  iN_2 = tanh(B + KoM 2 + gQ]/2u,~...iN_2) (3.19) 

where 

Q 2 ~ - Z  -1 ~ [ X ( u  i . . . .  iN_I) ] 2 (3.20) 
tN_l=l 

M 2 = z - '  ~ X(ui,.. .,N_,) (3.21) 
iN_l ~ 1 

and from the last of equations (3.4), 

X(u,,. . .  i^,_,) = tanh(B + KoM l + I(Q~/Zui .... iN_,) (3.22) 

with 
M, = QI '/2 = tanh B (3.23) 

The mean value (3.6) of (o0} is then the Gaussian average of the 
integral I [Eq. (3.12)] with respect to the variables ui~..i ,, s =  1,2, 
. . . .  N - 1 .  

If we integrate first over the outermost shell we observe from (3.20) 
and (3.21) that we need to evaluate integrals of the form 

f ~ (3.24/ Jz . . . .  z - '  g(Yi P(Yi) dYi 
- o o  i = 1  i =  

at least asymptotically in the limit z--~ oo. The evaluation of this limit is 
fairly straightforward and in fact is a consequence of the weak law of large 
numbers.(12) A brief discussion is given in Appendix A with the result that 
for bounded and continuous f and any normalized nonnegative distribution 
p such that gp1/2 is square integrable, 

lim Jz = f( f?o~ g(Y)P(Y)dy)  (3.25) Z ---~ O0 

Using this result repeatedly from the outermost to the innermost shell 
(with g = X and X 2) we obtain in the limit z-~ ~ an SK hierarchy of 
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equations for the means of M i and Qi, given, respectively, by 

mi = (27r)- ' /2~ ~ e-U2/2tanh(B + Komi_ 1 -4- I~qil/_2u)du 

and 

where 

(3.26) 

ml = q~/2 = tanh B (3.28) 

and from (3.6), (3.7), and (3.12) for an N shell Cayley tree with infinite 
coordination number, 

E{(ao> } =mN+ , and E{(oo> 2} =qN+1 (3.29) 

In the event that 

m =  lim m N and q =  lim qN (3.30) 
N--)~ N---) ~ 

exist, it is clear that m and q must be fixed points of (3.26) and (3.27), in 
which case these equations reduce to the SK equations. The particular fixed 
points approached in this limit depend on the initial conditions (3.28) and 
we stress once more that in order to obtain nontrivial values for m and q, 
the field B must only be set equal to zero after the thermodynamic limit 
N ~ c~ has been taken. 

For example, when K o = 0 and B > 0, (3.27) becomes a first-order 
difference equation for the qi and it is not difficult to show in this case (see 
Appendix B) that the qi approach the nontrivial fixed point q > 0 of (3.27). 
Moreover when/~  > 1, this fixed point remains positive in the limit B ~ 0 
and gives rise to the spin glass state m = 0 and q > 0. (2) 

We stress again, however, that this state, which holds rigorously for the 
Cayley tree, must be interpreted as a local rather than a global state. 
Likewise, the mean free energy, given in terms of the quenched local 
magnetization m = m(fl, B) by (8) 

,8~(fl, B ) = ~ [ m ( f l ,  b ) -  l ] d b -  B +  Eo (3.31) 

should be interpreted as a local free energy. Thus for example, when 
K 0 = 0, we show in Appendix C that (3.26), (32.7), and (3.31) yield the SK 
free energy 

- f l~( f l ,  B) =/<2(1 - q)2/4 

+ ;'_~(2~r)-'/%-x2/21ogZcosh(B + I?:xq'/2)dx (3.32) 

--t ~il/~U ]2du  (3.27) q i=(2~r ) - ' / 2 f ;  e-U2/2[tanh(B+ Komi + _ ) 
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where q is the positive fixed point of (3.27). This local free energy, as is well 
known, (=) gives negative entropy at low temperatures. 

4. THE TAP EQUATIONS 

Specializing to the case K 0 = 0 and recalling the expression (2.8) for 
the expectation value of a spin oj in the first shell, we find on substituting 
(3.3), that from (3.1) and (3.4), 

(oj)~Xj + Kx/z-1/=(1 - Xj2)(o0), j v a 0  as z + ~  (4.1) 

where the XSs are defined recursively by (3.4). 
From (4.1) it is an easy matter to derive the TAP equations by noting 

first from (3.4) that 

(~176 B+I~z- ' /2~xjXj  ) j = l  as z ~ oo (4.2) 

and then by eliminating the Xj between (4.1) and (4.2), we obtain to leading 
order 

( o 0 ) = t a n h { B +  ~gxjz-1/2(oj)-(Oo)~I(xZz-l[1-(oj)=])  (4.3) 
j= l  j= l  

These equations are only a slightly disguised version of the TAP 
equations (5) with (oj)  replacing mj and Kx/z - 1/2 replacing 3Joj in the usual 
notation. 

Although the TAP equations have a certain physical appeal and 
interpretation it is not at all clear how one now proceeds with the averaging 
over the Gaussian random variables xi,.. ",. and thereafter to the classical 
limit z + oo. With the equivalent equations (4.1), however, the procedure is 
relatively straightforward as we now show. 

Firstly, under the orthogonal change of variables (3.11), which can be 
inverted to give 

x i -- ~_~ ajyj (y, = u) (4.4) 
j = l  

Eqs. (4.1) and (4.2) yield 

(oj)~Xj + Kz- ' /2~ aijYi(1- Xj2)tanh(B + I~y, QY 2 ) (4.5) 
i = l  

where QN is defined by (3.10). Since the first row of the matrix (a~j) is the 
vector (3.9), we have 

a v = Xj( QNz)-1/2 (4.6) 

Also, since the distribution of the Gaussian random variables x~ (and hence 
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Yi) is symmetric about the origin, E(yi} = 0, i =  1,2 . . . . .  z. It then 
follows from (4.5) that 

j = l  

z 

+E{gz-2Q~l/zv,~Xj(1-XjZ)tanh(B+Ky, Q~/=)) (4.7) 
j = t  

The second term on the right-hand side of (4.7) is O(z -~) and by 
definition the left-hand side is the magnetization per spin of the first shell. 
It follows then from (3.13) and the argument leading to the SK hierarchy 
(3.26) and (3.27) that in the classical limit, 

limE{z-l ~ (oj)}= limE(M~ )-=mN (4.8) 
z~,r  j = l  z---> oe " 

where m N is obtained recursively from (3.26) and (3.27). 
In this way, the TAP equations, once the averaging and classical limit 

have been taken, reproduce the SK hierarchy (3.26) and (3.27) and provide 
the interpretation that m i and q; represent, respectively, the mean magne- 
tization and the mean square magnetization of the ith shell from the surface 
of the latticeJ s) 

5. DISCUSSION 

In this paper we have studied the random Ising model on a Cayley tree 
rigorously in the limit of infinite coordination number z ~ ar 

An iterative scheme was developed which relates the mean magnetiza- 
tions and their mean squares of successive shells far removed from the 
surface of the lattice. In this way we obtain local properties of the model by 
examining the asymptotic properties of the iterative scheme in the (ther- 
modynamic) limit of an infinite number of shells. 

For the particular case where the coupling constants are independent 
Gaussian random variables, the SK expressions for the mean magnetization 
and its mean square emerge as fixed points of our iterative scheme. These 
expressions and the corresponding SK free energy which we obtain by 
integration, should all be interpreted as local quantities so that the occur- 
rence of negative local entropy at low temperatures is now mathematically 
possible although perhaps still physically undesirable. Nevertheless, these 
results are valid locally for the Cayley tree and provide a possible interpre- 
tation of the SK equations as a local mean-field theory for spin glasses. 
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Finally, we have reexamined the TAP equations which are based on 
the locally valid Bethe approximation on a Cayley tree. We have shown 
that if the average over bond disorder and the limit z ~ oe are actually 
performed on these equations, one recovers our iterative scheme for shell 
magnetizations and their mean square and hence, in the thermodynamic 
limit, one also recovers the locally valid SK mean-field equations. 

It should be mentioned that the actual convergence of our iterative 
scheme to the SK equations as stable fixed points has only been discussed 
here for the symmetric Gaussian distribution considered by TAP. 

Alternative equations based on other types of bond distributions and 
general questions of convergence of associated iterative schemes will hope- 
fully form the basis of a subsequent publication. 
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APPENDIX A. DERIVATION OF EQUATION (3.25) 

Let us first define the probability measure t* by 

dr(x) = p(x)dx  

and denote by m(S), the measure of the set 

S = ( ( x ~ , . . . ,  x z ) : l O ( x ) - C l > ~ }  

with respect to the z-dimensional measure 

d r  = dt (x,) . . . d (xz) 

That is 

m(S)  = fsdl ~ 

where 

(A.1) 

(A.2) 

(A.3) 

G(x) = z -1 k g(xi) and G = ~ g(x)dlx(x) (A.4) 
i = l  J - - ~  

We first prove the following lemma which is an elementary generaliza- 
tion of the weak law of large numbers. (~2) 

Lemma. For square integrable g with respect to d/~, 

re(S) <~ (ze2) - '  f ? ~  [ g(x) - G] 2 dt~(x ) (A.5) 
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Proof. Consider the integral 

I "~" " I [  ~1 g(Xi)-- zG] d~l(X1) " " " d~l(Xz) i= i= g(x i ) -  zG d~ 

) z2e2m(S) (A.6) 

From (A.4) it is easily shown that the left-hand side of (A.6) is equal to 

from which the result (1.5) follows. �9 

Assuming now that f is bounded and continuous we can, given (3 > 0, 
choose c > 0 such that 

I G ( x ) -  G I < E~I f (G(x ) )  -f(G)l < 6 (A.7) 

It then follows that 

f { f(G(x))  - f (  G )} d# ~< __fie(x)- al < J f (G(x))  - f (  G )1 d~ 

+ (  l / (G(x) )  -f(G)ldt~ 
JIG(x)-/l>~ 

< ~ + 2Mm(S) (A.8) 

where 

M = sup{f (x)} < oo 

The required result (3.25) then follows from the lemma by taking 
z ~ oe in (A.8) and noting that 6 > 0 is arbitrary. 

APPENDIX B. STABILITY OF THE SK FIXED POINT 

When K 0 = 0 the first-order difference equation (3.27) for qill2~ Yi 
can be expressed in the form 

Yi+I=F(Yi), i =  1 ,2 , . . .  (Y0 = 0) (B.I) 

where 

F ( y ) =  {(2~r)-'/2f]e-"V2[tanh(B + Kyu)]2du} '/2 (B.2) 

Granted that there is at most one nonnegative solution of the SK 
equations, (/) and noting from (B.2) that F(0) = tanh B > 0 and F(y) ~ 1 as 
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y--~m, it follows that there is only one fixed point 0 < y * <  1 of (B.1) 
satisfying 

y* = F(y*) (B.3) 

and such that 

F' (y* )  < ~ (B.4) 

Moreover, from (B.2) we have in general that 

F'(y) = [ 2 F ( y ) ] - l ( 2 ~ r ) - t / 2 f ? e - U 2 / 2 2  tanh(B + Kyu) 

•  tanh2(B + Is 

=[2yF(y)]-'(2,tr)-'/2 f?, e-'2/2(u 2-  1)tanh2(B + I(yu)du 

(B.s) 
where in the last step we have integrated by parts. 

It follows from (B.2) and (B.5) that at the fixed point (B.3), 

l ( [ F ( y * ) ] - 2 ( 2 . ) - l / 2 f ? o o e - ' : / 2 u 2 t a n h 2 ( B +  f;y*u)du-1 } F'(y*)  = 

> - 1/2 (B.6) 

Equations (B.4) and (B.6) together imply that y* is stable, so that in 
(B.1) Yi-+y* as i ~  oo. 

APPENDIX C. DERIVATION OF THE LOCAL FREE ENERGY (3.31) 

In general, the local free energy ~* for an Ising model with zero field 
interaction energy E (o) ,  is given in terms of the local magnetization m* 
by(8) 

p~,*(B,8) = fs~Em*(~,b)- 1lab+ Eo-  ~ (C.I) 

where E o is the limiting value of E { o ) per spin when all spins are set equal 
to unity. 

In the case of a symmetric bond probability distribution function such 
as (3.2), with K o equal to zero, the average of E o is zero and the quenched 
local free energy ~ and magnetization m are related by 

fl+(fl, B)= fBC~ b ) - 1]db- B (C.2) 
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Assume now that m and its mean square q are (nonnegative) fixed 
points of (3.26) and (3.27) (with K 0 = 0). That is 

m( fl, b) = (2~r ) -1 /2f ;e -"2 /Ztanh(b  + Kql/2u)du (C.3) 

and 

,/2 r162 e-.2/2 tanh b &l/2u)]2du (C.4) [ ( + 

Noting that 2 c o s h a ~ e "  and q(fi, b)~l as a and b tend to infinity, 
we arrive at the identity 

B - f j ~ ( 2 , ~ ) -  '/2e-~2/2 log2 cosh(B + ICq'/2u) du 

= f'_~(2rr)-'/2e-"=/2{ f f~ -~b log2cosh(b + Kq'/2u) - ' ]db } du 

= { tanh(b + &'/2u) -1  }dudb 

+ ~ ~ 1 7 6  ) '/2e-~V2I~utanh(b + f;q'/2u) Oq~b2 dudb (C.5) 

The first term on the right-hand side of (C.5) is easily seen from (C.2) 
and (C.3) to be 

f OC[m(fl, b)_ l J d b =  B + fl+(fl, B) (C.6) 

To simplify the second term, note from (C.4) that 

l -  q = f~_~(2~r)-l/2e-~V2[ i - tanh2(b + I(ql/2u) ] du 

= (2rrqIs163 ~Ou [tanh(b + ICq'/2u)]du 

= (2qrql(2)-l/gs + l~ql/2u)du (C.7) 

The second term on the right-hand side of (C.5) can then be written as 

fB~(/~2/2) ~q { (2vrq~2)-l/2 f~176 e-~2/2utanh(b + lCqW2u)du } db 

= ( Ir f f~  ~-~ (q - q:/2)db 

= /~2(1 -- q)2/4 (C.8) 
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C o m b i n i n g  (C.5), (C.6) a n d  (C.8),  we  h a v e  the S K  exp re s s ion  for the  

local  f ree  ene rgy  

g (1 q)2 
+ L~.(27r)- ' /2e-~V21og2cosh(B + lCq'/Zu)du - ~ ( B , B )  - 4 - 

(C.9) 
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